Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Robert T. Stibrany, Joseph A. Potenza* and Harvey J. Schugar

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA

Correspondence e-mail:
potenza@rutchem.rutgers.edu

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.043$
$w R$ factor $=0.105$
Data-to-parameter ratio $=12.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Benzyl-4,5-diphenyl-3-vinylimidazolium bromide

The title compound, $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2}^{+} \cdot \mathrm{Br}^{-}$, contains columns of tetrasubstituted imidazolium cations linked to Br^{-}ions via hydrogen bonding. There is little evidence of π-stacking between cations.

Comment

Imidazolium (im) salts, some with melting points well below room temperature, constitute a class of ionic liquids, species that have been used as non-volatile solvents for a number of chemical applications (Welton, 1999). Factors influencing the melting points of these salts include charge delocalization, interionic hydrogen bonding, symmetry, and substituent chain length (Bonhote et al., 1996; Golding et al., 1998). This diversity makes melting points difficult to predict, although charge localization, hydrogen bonding and high symmetry are all expected to increase melting points.

(I)

(II)

(IV)

(III)

(V)

Received 25 June 2002
Accepted 10 July 2002
Online 19 July 2002

Figure 1
The structure of the cation of (I), showing 25% probability displacement ellipsoids.
(C2-N1 and C2-N3), long (N1-C5 and N3-C4), and short (C4-C5) variation (Elaiwi et al., 1995). Quantitatively, they agree, within experimental error, with the averages of those reported for three other tetra-substituted imidazolium species, (II), (III) and (IV) (Kuhn et al., 1996, 1999, 2001).

The α-vinyl and methylene C atoms (C 6 and C 8) lie in the imidazolium plane, with the attached phenyl (C21-C26) and methylene (C7) groups on opposite sides of the plane. The phenyl substituents at C 4 and C 5 are canted in the same direction and make angles of 46.8 (2) and 76.9 (2) ${ }^{\circ}$, respectively, with the imidazolium plane. Based on the im/vinyl ($\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$) dihedral angle of $74.1(6)^{\circ}$, the π systems of the vinyl and imidazolium groups can interact only weakly. 1-Vinylimidazole and -imidazolium systems unhindered at the 2- and 5-positions have corresponding dihedral angles within approximately 10° of coplanarity, while the vinyl group in the tetra-substituted imidazole (V) (Chan et al., 1993) is oriented similar to that in (I).

The above structural features yield a bulky low-symmetry cation, with the relatively unhindered atom C2 the most likely point for an anion to approach to minimize the Coulombic energy of the crystal. Consonant with this expectation, the shortest non-hydrogen inter-ionic contact is $\mathrm{Br} 1 \cdots \mathrm{C} 2$ at 3.568 (3) A. Furthermore, the $\mathrm{Br} 1 \cdots \mathrm{H} 2$ distance $(2.73 \AA)$ and the $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1$ angle $\left(151^{\circ}\right)$ suggest the presence of an inter-ionic hydrogen bond. The $\mathrm{Br} 1 \cdots \mathrm{H} 2$ distance is comparable to that reported ($2.78 \AA$; Elaiwi et al., 1995) for an N, N^{\prime}-disubstituted imidazolium bromide, which was taken to indicate hydrogen bonding. The relatively high melting point of (I), 458 K , is consistent with relatively close contact between fairly localized charges and the presence of an interionic hydrogen bond.

Figure 2
Unit-cell diagram, showing cation and anion columns stacked along the b axis.

Experimental

The title compound, (I), was obtained by the addition of an equimolar amount of benzyl bromide to a toluene solution of 1-ethyl-4,5diphenylimidazole (Stibrany et al., 2001) under atmospheric conditions. Crystals were grown by dissolving the precipitated product in acetonitrile and allowing slow evaporation. NMR spectroscopy of the reaction mixture showed that the expected product, 1-benzyl-3-ethyl-4,5-diphenylimidazolium bromide is formed first and then is rapidly oxidized to (I). The mechanism of this oxidation is currently under investigation.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$	$D_{x}=1.296 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=417.34$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{\perp}$	Cell parameters from 705
$a=10.883(2) \AA$	reflections
$b=9.440(2) \AA$	$\theta=3.9-22.3^{\circ}$
$c=11.210(2) \AA$	$\mu=1.92 \mathrm{~mm}^{-1}$
$\beta=111.07(1)^{\circ}$	$T=298(1) \mathrm{K}$
$V=1074.7(4) \AA^{3}$	Rod, pale pink
$Z=2$	$0.52 \times 0.26 \times 0.20 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	3017 independent reflections
\quad diffractometer	2259 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.021$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
$\quad(S A D A B S ;$ Blessing, 1995)	$h=-12 \rightarrow 7$
$T_{\text {min }}=0.425, T_{\text {max }}=0.681$	$k=-11 \rightarrow 10$
4474 measured reflections	$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.106$
$S=1.00$
3017 reflections
244 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0649 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$
Absolute structure: Flack (1983);
1196 Friedel pairs
Flack parameter $=-0.016(13)$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

N3-C2	$1.332(6)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.310(6)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.402(5)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.389(6)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.372(6)$		
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$108.4(4)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$110.1(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	$105.6(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$107.5(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	$108.5(4)$		

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2000).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K. \& Grätzel, M. (1996). Inorg. Chem. 35, 1168-1178.

Bruker (2000). SHELXTL (Version 6.10), SAINT (Version 6.02) and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Chan, C., Bailey, E. J., Hartley, C. D., Hayman, D. F., Hutson, J. L., Inglis, G. G. A., Jones, P. S., Keeling, S. E., Kirk, B. E., Lamont, R. B., Lester, M. G., Pritchard, J. M., Ross, B. C., Scicinski, J. J., Spooner, S. J., Smith, G., Steeples, I. P. \& Watson, N. S. (1993). J. Med. Chem. 36, 3646-3657.

Elaiwi, A., Hitchcock, P. B., Seddon, K. R., Srinivasan, N., Tan, Y.-M., Welton, T. \& Zora, J. A. (1995). J. Chem. Soc. Dalton Trans. pp. 3467-3472.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Golding, J. J., MacFarlane, D. R., Spiccia, L., Forsyth, M., Skelton, B. W. \& White, A. H. (1998). Chem. Commun. pp. 1593-1594.
Kuhn, N., Bohnen, H. \& Henkel, G. (1996). Z. Kristallogr. 211, 57.
Kuhn, N., Göhner, M., Steimann, M. \& Nachtigal, Ch. (1999). Z. Kristallogr. New Cryst. Struct. 214, 565-566.
Kuhn, N., Steimann, M. \& Weyers, G. (2001). Z. Kristallogr. New Cryst. Struct. 216, 315-317.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97-2. University of Göttingen, Germany.
Stibrany, R. T., Potenza, J. A., \& Schugar, H. J. (2001). Private communication (reference number CCDC 172751) to the Cambridge Structural Database, 12 Union Road, Cambridge, England.
Welton, T. (1999). Chem. Rev. 99, 2071-2083.

